Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 98: 117562, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38184947

RESUMEN

In this report, a library consisting of three sets of indole-piperazine derivatives was designed through the molecular hybridization approach. In total, fifty new hybrid compounds (T1-T50) were synthesized and screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain (ATCC-27294). Five (T36, T43, T44, T48 and T49) among fifty compounds exhibited significant inhibitory potency with the MIC of 1.6 µg/mL, which is twofold more potent than the standard first-line TB drug Pyrazinamide and equipotent with Isoniazid. N-1,2,3-triazolyl indole-piperazine derivatives displayed improved inhibition activity as compared to the simple and N-benzyl indole-piperazine derivatives. In addition, the observed activity profile of indole-piperazines was similar to standard anti-TB drugs (isoniazid and pyrazinamide) against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains, demonstrating the compounds' selectivity towards the Mycobacterium tuberculosis H37Rv strain. All the active anti-TB compounds are proved to be non-toxic (with IC50 > 300 µg/mL) as verified through the toxicity evaluation against VERO cell lines. Additionally, molecular docking studies against two target enzymes (Inh A and CYP121) were performed to validate the activity profile of indole-piperazine derivatives. Further, in silico-ADME prediction and pharmacokinetic parameters indicated that these compounds have good oral bioavailability.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Simulación del Acoplamiento Molecular , Isoniazida/farmacología , Pirazinamida , Piperazinas/farmacología , Triazoles/farmacología , Triazoles/metabolismo , Piperazina , Relación Estructura-Actividad , Mycobacterium tuberculosis/metabolismo , Indoles/farmacología , Pruebas de Sensibilidad Microbiana
2.
Bioorg Med Chem Lett ; 30(2): 126846, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31839540

RESUMEN

Tuberculosis remains as a major public health risk which causes the highest mortality rate globally and an improved regimen is required to treat the drug-resistant strains. Pyrazinamide is a first-line antitubercular drug used in combination therapy with other anti-TB drugs. Herein, we describe the modification of pyrazinamide structure using bioisosterism and rational approaches by incorporating the 1,2,3-triazole moiety. Three sets of pyrazine-1,2,3-triazoles (3a-o, 5a-o and 9a-l) are designed, synthesized and evaluated for their in vitro inhibitory potency against mycobacterium tuberculosis H37Rv. The pyrazine-1,2,3-triazoles synthesized through the bioisosteric modification displayed improved activity as compared to rationally modified pyrazine-1,2,3-triazoles. Among 42 title compounds, seven derivatives demonstrated significant anti-tubercular activity with the MIC of 1.56 µg/mL, which are two-fold more potent than the parent compound pyrazinamide. Further, the synthesized pyrazinamide analogs demonstrated moderate inhibition activity against several bacterial strains and possessed an acceptable in vitro cytotoxicity profile as well. Additionally, the activity profile of pyrazine-1,2,3-triazoles was validated by performing the molecular docking studies against the Inh A enzyme. Furthermore, in silico ADME prediction revealed good oral bioavailability for the potent molecules.


Asunto(s)
Antituberculosos/uso terapéutico , Pirazinamida/síntesis química , Triazoles/síntesis química , Antituberculosos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirazinamida/química , Relación Estructura-Actividad , Triazoles/química
3.
Bioorg Chem ; 92: 103281, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31561106

RESUMEN

Sirtuins (SIRTs), class III HDAC (Histone deacetylase) family proteins, are associated with cancer, diabetes, and other age-related disorders. SIRT1 and SIRT2 are established therapeutic drug targets by regulating its function either by activators or inhibitors. Compounds containing indole moiety are potential lead molecules inhibiting SIRT1 and SIRT2 activity. In the current study, we have successfully synthesized 22 indole derivatives in association with an additional triazole moiety that provide better anchoring of the ligands in the binding cavity of SIRT1 and SIRT2. In-vitro binding and deacetylation assays were carried out to characterize their inhibitory effects against SIRT1 and SIRT2. We found four derivatives, 6l, 6m, 6n, and 6o to be specific for SIRT1 inhibition; three derivatives, 6a, 6d and 6k, specific for SIRT2 inhibition; and two derivatives, 6s and 6t, which inhibit both SIRT1 and SIRT2. In-silico validation for the selected compounds was carried out to study the nature of binding of the ligands with the neighboring residues in the binding site of SIRT1. These derivatives open up newer avenues to explore specific inhibitors of SIRT1 and SIRT2 with therapeutic implications for human diseases.


Asunto(s)
Diseño de Fármacos , Inhibidores de Histona Desacetilasas/farmacología , Indoles/farmacología , Simulación del Acoplamiento Molecular , Sirtuina 1/antagonistas & inhibidores , Sirtuina 2/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Sirtuina 1/metabolismo , Sirtuina 2/metabolismo , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
4.
Eur J Med Chem ; 168: 263-282, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822714

RESUMEN

The objective of the current study is to synthesize a library consisting of four sets of phenothiazine incorporated 1,2,3-triazole compounds using molecular hybridization approach. In total, 36 new hybrid molecules were synthesized and screened for in vitro growth inhibition activity against Mycobacterium tuberculosis H37Rv strain (ATCC-27294). Among the tested compounds, nineteen compounds exhibited significant activity with MIC value 1.6 µg/mL, which is twofold higher than the MIC value of standard first-line TB drug Pyrazinamide. In addition, all these compounds are proved to be non-toxic (with selective index > 40) against VERO cell lines. However, these compounds did not inhibit significantly the growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains: the activity profile is similar to that observed for standard anti-TB drugs (isoniazid and pyrazinamide), indicating the specificity of these compounds towards the Mycobacterium tuberculosis strain. Also, we report the molecular docking studies against two target enzymes (Inh A and CYP121) to further validate the antitubercular potency of these molecules. Furthermore, prediction of in silico-ADME and pharmacokinetic parameters indicated that these compounds have good oral bioavailability. The results suggest that these phenothiazine incorporated 1,2,3-triazole compounds are a promising class of molecular entities for the development of new antitubercular leads.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Fenotiazinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Triazoles/farmacología , Adsorción , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Fenotiazinas/química , Fenotiazinas/metabolismo , Relación Estructura-Actividad , Triazoles/química , Triazoles/metabolismo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...